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Stable Joint Torque Optimization for Multiple Cooperating
Redundant Manipulator System

Hee-Jun Kang*
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In this paper, JOInt torque optimization for multiple cooperating redundant manipulators
rigidly handling a common object is considered. This work focuses on finding the optimal and

stable distribution of the operational forces of a multiple redundant manipulator system to the
individual manipulators. Two joint torque optimization schemes(local joint torque minimiza

tion and natural joint motion) are formulated and compared. When a redundant manipulator

with its joints free is driven by its tip, a naturally inducing joint motion can be called 'natural
jomt motion'. From the simulation results of a system of three cooperating redundant manipula

tors, the natural joint motion scheme is shown to be better than the local joint torque
minimization scheme with regard to global torque minimization capability and the resulting

stability of motion. However, in order to guarantee the stability, the null space damping method
is required for the both schemes. The effectiveness of the null space damping method is

demonstrated by simulation. Additionally, the condition for the distribution of the operational
forces required to drive the given system along a natural joint motion trajectory is addressed.

Key Words: Joint Torque Optimization, Multiple Cooperating Manipulators, Null Space
Damping Method, Natural Joint Motion

1. Introduction

Cooperative use of multiple manipulators(or
fingers) will allow the performance of more

industrial applications than can currently be

undertaken using single manipulators. Such sys
tems can provide greater load capacity, better

manipulation capability, and higher flexibility in
automated manufacturing. Typical example appli
cations include transport of heavy material, fine

manipulation of objects and part assembly. A
number of works dealing with cooperative execu

tion of tasks performed by multiple cooperating
manipulators have appeared recently. One of the
main topics of this research is the problem of load
distribution.

Th(: load distribution techniques for multiple
cooperating manipulator systems handling a com-
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mon object appearing in the literature may be

categorized into three groups: I) Dynamic loads
of the common object are determined and dis
tributed to the tip of each individual manipulator

according to a number of different criteria involv

ing contact geometry between the common object
and the manipulators. Then, the optimally dis

tributed forces/moments are directly added to the
dynamics of each manipulator by using the trans

pose of Jacobian. This technique emphasizes the
object to be manipulated rather than the manipu

lators and has been mainly used for fine manipu
lation of the object(Kerr and Roth, 1986; Kumar
and Waldron, 1987). 2) Dynamic loads of the
common object are determined and directly incor
porated into the dynamics of each manipulator
according to task dependent performance criteria
involving the total system geometry. This tech
nique has been mainly used for transport of a
heavy object(Zheng and Luh, 1988; Pittelkau,
1988). 3) Reduced order dynamic models of the

total system are expressed in terms of the task
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where

damping method is demonstrated by simulation.
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2. Operational Space Dynamic Model
ing of Multiple Cooperating Redun
dant Manipulators Rigidly Handl

ing a Common Object

The configuration of the considered system is

shown in Fig. I. The kinematic and dynamic

model of each individual manipulator is assumed
known. First, the object dynamics is considered
as follows, the Newton-Euler equations for the
object are

where m o and [10 ] are the mass and inertia matrix

of the object and rand ware the position of the
operational point and the absolute angular veloc
ity of the object, respectively.

Equations (I) and (2) are combined to yield the
operational forces required to move the object as

Fo=[oI:u]i-i +oCu (3)

with the 3 x 3 identity matrix and null matrix
being [IJ and [OJ, respectively
and

Fig. 1 Multiple cooperating redundant manipula
tors handling a common object

Now, the operational space dynamic model of
each individual manipulator(i = I, 2, "', L) is

coordinate set, or any system independent coordi

nate St:t, by embedding the closed chain con
straints into the motion of the system. The model
based dynamic loads required to complete the
given task are distributed according to cost saving

criteria involving the total system geometry. This

technique has also been used for transport of a
heavy object(Carignan and Akin, 1989; Hsu,

1989; Khatib, 1988; Kreutz and Lokshin, 1988).
Most of works, except Hu and Goldenbur

g( 1990), are not concerned with the utilization of

the redundancy of each manipulator with respect
to the given task motion. In this paper, local joint

torque optimizations for multiple cooperating
redundant manipulator system are performed,

which might belong to the third load distribution
category above. The method starts with the opera

tional space dynamic formulation for mUltiple
cooperating redundant manipulators. From this

formulation, the unique matrix is obtained, which
maps the joint torque set of the individual manip

ulators onto its corresponding task-dependent

operational forces. Based on this functional rela
tionship, two joint torque optimization

schemes(local joint torque minimization and nat
ural joint motion) are formulated. The stability

problem, commonly encountered in local joint
torque: optimization of single redundant manipu

lators, was also observed in the multiple cooperat
ing redundant manipulator system through the

simulation of three 3 DOF cooperating manipula

tors for planar translational operational trajec
tory. In addition, the stability of algorithms using

the transpose of Jacobian among load distribu
tion schemes above can not be guaranteed in

cased of redundant situation, in order to map the
optimally distributed operational forces( or con

tact forces/moments) to each individual manipu
lator. The instability is shown due that the use of
the transpose of Jacobian for distribution of the
operational forces leads to the natural joint
motion, which often tends to be unstable for a
long time trajectory. In order to eliminate the
stabihty problem, the null space damping
method(Kang and Freeman, 1993) is considered

for the multiple cooperating redundant manipula
tor system. The effectiveness of the null space
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where the m X m effective inertia matrix and the m
X I vector of Coriolis, centripetal and gravity

components of the i th manipulator are, respective
ly,

considered based on its joint space dynamic

model and the Jacobian, !,' which relates the
Cartesian velocity of the center of mass of the

object to the joint coordinate velocities of the i th

manipulator. The joint space dynamic model of
the i th manipulator is expressed as

3. Functional Relationship Between
Joint Torques and Operational

Forces

[ftV = [(dtV : ... : (JtV : .. '(JtV ] (12)

with

where the joint torque set

Using Eqs. (9) - (II), the operational forces
required to drive the given robotic system along

the desired operational space trajectory are
obtained from the control structure of the given

robotic system. The required joint torque is not
unique. The surjective function mapping the joint

torque set onto its effective operational forces can
be represented by augmenting the matrices,
(JtV, seen in Eq. (8).

Proposition I) Any set of joint torques of
multiple redundant manipulators rigidly handling

a common object can be mapped onto its effective

operational forces by a unique transformation
matrix, [ft] T.

F=[ftVr~

(6)

(7)

and

where ¢, is joint coordiate vector of the i th

manipulator with ,r~, [J:~] and C(¢" ¢,) being
its n X I joint load vector, n X n inertia matrix and

n X I vector of Coriolis, centripetal and gravity
components, respectively.

The joint space dynamic model can be transfer-

red to the operational space dynamic model
according to the formulation given in Appendix

I. The effective operational forces due to the i th

manipulator can be written as

where the corresponding mxm inertia matrix of
the given robotic system is

with the m X I vector of Coriolis, centripetal and
gravity components being

and

(JtV =[J:u]!,[J:~]-l

Proof: See Appendix I.

The next two propositions are given to illus
trate the condition for the distribution of opera

tional forces to a joint torque set of the multiple

cooperating redundant manipulator system for
inducing natural joint motion. This condition

might help one to understand the natural behav
ior of the total system and will be used for a joint
torque optimization scheme to follow.

Proposition 2) For a given operational force
vector(F), a system independent joint torque
set( ra) which is mapped by a transformation

matrix, UiiV, drives the multiple cooperating
redundant manipulator system along the natural

joint motion, where the Jacobian matrix UiiV
relates the system's operational space velocity

vector to the system independent joint velocity

(9)

(8)

(10)

(II)

,Cu=-L1:u]H(¢" ¢,)
+(JtVC(¢" ¢,)

with (JtV =[J:u]!,Ll:~]-l

L

F=Fo+l'F,=[I:u]ii + Cu
il

L

Cu=oCu+ l' ,Cu
i=1

where H( ¢" ¢,) is Coriolis and centripetal accel
eration vector of the i th manipulator.

The operational forces of the considered
robotic system can be expressed as a sum of

effective operational force contribution of each
individual manipulator and the common object as
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vector. (For clarity, see Eq. (19).
Proof: When the multiple manipulators hold a

common object, closed chain mechanisms are
formed. Due to the closed chain constraint equa
tions, the Lagrangian coordinates employed to

initially describe the system are divided into a
system independent coordinate set and a system

dependent coordinate set. Then, the equations of
motion of the given system can be completely

described in terms of system independent coordi
nate set. Once the minimal kinematic and
dynamic models are obtained, the argument for

the natural joint motion of the multiple cooperat
ing manipulator system can be treated in the same
fashion as that for a single redundant manipula

tor. From the torque solution in Eq. (12) of Kang

and Freeman(l993), the proposition is evident.

(Q. E. D)

system Lagrange coordinate set of the i th manipu
lator and the system independent set(Refer to
Kang and Freeman( 1994) for generation of the
Jacobians). Substituting Eq. (13) into Eq. (16)
yields

(17)

=CJtVj{Fl

+ .. +(JtVJrFr + ..
+CJt)?IFL'

The Jacobian matrix relating the operational
space velocity vector to the system independent

coordinate velocity vector is obtained by sub
stituting the internal joint kinematic relation

ship(i. e., Jt) into the first order kinematics of a

selected manipulator. Regardless of which manip
ulator is taken to describe the operational space

motion, the same Jacobian matrix is obtained.
Therefore,

( 13)

(14)

Proposition 3)

ir~=JrFi i=l, 2, ... , L

and

when: (J%) IS the Jacobian matrix relating the

when: ut) is Jacobian matrix relating the system

Lagrange coordinate set and the system indepen

dent coordinate set.
The detailed expression of Eq. (15) can be

writte:n as

(19)

Equation (12) is a relationship between the

manipulator joint torques and the states of the
system which are specified by the trajectory of the

common object. What remains is to specify the
manipulator joint torques required 10 achieve the

specified operational trajectory of the object
grasped by a group of redundant manipulators.
The underdetermined problem of solving the joint

torques from Eq. (12) allows one to optimize a
given performance criterion as an additional con
trol constraint, which then uniquely determines
the joint torques. In this section, two local joint

torque optimization schemes are treated, based on
the functional relationship given in Eq. (12).

From Proposition 2), the joint torque set

obtained from this distribution scheme drives the
system along the natural joint motion. (Q.E.D)

4. Joint Torque Optimization

u~)=NIlt) = .. = JiUt) = .. = JL(J%)· (18)

Combining Eqs. (13), (16) and (17) yields

(15)

Any joint torque set obtained from the opera

tional force distribution according to Eqs. (13)
and (14) drives the multiple cooperating redun

dant manipulator system along the natural joint
motion.

Proof: The system independent actuating tor

que set, ra, is effectively equivalent to the corre
sponding Lagrangian torque set, r~, in that both
joint torque sets drive the system along the same

joint trajectories. The relationship is written as
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where

Incorporating null space dissipative forces, the

command torques become

The particular solution seen in Eq. (20) provides
the local minimum joint torque norm required to

drive the total system along a specified opera
tional trajectory.

ir¢=]lIJ,;"u][I,;"u]-IF. i=l, 2, "', L(24)

It is recognized from proposition 3) that the joint
torque solution in Eq. (24) drives the given sys

tem along natural joint motion(here, Fi=[,I:U][]
tu]-lF in Eq. (13». Equation (24) also shows

that the operational forces are distributed to the
individual manipulators according to their effec

tive operational inertia contribution. It is also
shown that the effective operational inertia

matrix, obtained from the object dynamics, has
nothing to do with this distribution scheme.

Although the resulting torques drive the system
along natural joint motion, the fact that the joint
torque set corresponding to a given joint motion

is not unique due to the additional force redun

dancy of multiple cooperating redundant manipu
lators, give rises to a question: Does the opera

tional inertia distribution scheme generates the

true minimum norm among all other possible sets

of joint torques which can drive the given system
along the natural joint motion? This question

leads to the consideration of the following joint

torque optimization scheme. It is assumed that the
given system makes natural joint motion. With

the aid of Proposition 3), the joint torque optim

ization scheme for natural joint motion is refor
mulated as

that its ith diagonal submatrix is the joint inertia
matrix of the i th manipulator.

Decoupling Eq.(22), the joint torques of the i th

manipulator can be expressed as

Min(+rlr¢)

subject to ,r¢=]rFi i=l, 2, "', L
L

F= }; F,. (25)
i=1

Using the L x I vector of Lagrange multipliers, A,
and substituting Eq. (25) into the objective func
tion, the augmented objective function, ], can be
written as

(20)

(2 I)

4.1 Joint torque minimization(JTM)

Min(+rlr¢)

subject to F= []tYr¢·

They are the joint torque mInImIzation scheme

and the natural joint motion scheme. The result
ing torques of both schemes given here include
fictitious damping forces acting in the null space

of []t y, since stability problems are expected
here as they were in the joint torque optimization

schemes( Kang and Freeman, 1993) for single
redundant manipulators. In that paper, the condi

tion for null space damping matrix to achieve the
positive damping is addressed.

4.2 Natural joint motion(NJM)
As seen in Nedungadi and Kazerounian( 1989),

the joint torque optimization scheme may be

obtained using the inverse inertia weighted joint

torque norm as an objective function:

Min(+rl[I;¢]-lr¢)

subject to F= []tYr¢

where the inverse inertia matrix is constructed
such that its i th diagonal submatrix is the inverse
of the joint inertia matrix of the i th manipulator.
The command torques, including the null space
component, in terms of the weighted Moore
Penrose generalized inverse, is obtained as

(22)

where

PI = [u¢][]t]([]tV[U¢][]t])--1 (23)

and the inertia matrix, U;¢], is constructed such

(26)

The problem is now reduced to determining the
minimum solution of the unconstrained objective

function, ], in terms of the independent parame-
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ters, ;l and F i (i = I, 2, "', L). This requires that

:~;=JJTFi-;l=O i=l, 2, "', L (27)

and

oJ L,
"0' =F- 1 F,=O.

Il i= I
(28)

tional stiffness contribution rather than their
operational inertia contribution. Incorporating

the null space damping forces, which satisfy the
stability condition(seen in Kang and Freeman,
1993), the command torques from this scheme
become

Substituting Eq. (3 I) into (25), the joint torques

required to satisfy the objective function are

Assuming that there is no kinematic degeneracy

in any of the individual manipulators, solving Eq.
(27) for F i yields

Fi=(jjD-l;l. i=l, 2, "', L (29)

Substituting Eq. (29) into (28) and solving for ;l

gives

5. Numerical Simulation and
Discussion

(36)

if¢ = Jl'LK,1U][iK,1u]-1 F

-- Kd{[I] - fTCltV}[J/¢]¢i'
i= 1,2, "', L

In this section, the joint torque minimization
and natural joint motion schemes are presented

for the desired performance: the resulting torques
are globally stable and have good torque minim
ization capability. The performances of the joint

torque minimization scheme(Eq. (20» and the
natural joint motion scheme(Eq. (36)) will be

compared through the following simulation
results.

(30)

(31)

L

Fi=(jjD-l{lUj/)-l}-IF
il

i=l, 2, "', L.

Substituting Eq. (30) into (29) yields

L

if¢=Jr(jJD- I{ 2: (jj/}-l}-IF.
i=-1

i=I,2,,,,,L (32)

From Appendix 2., the physical interpretation of
the force distribution of Eq. (31) is that the

operational forces are distributed to the individ

ual manipulators according to their effective
operational stiffness contribution, for the case in

which all joints of the given system are assumed

to have equal motor stiffness. Based on this
physic'al interpretation, Eq. (32) can be written as

,f¢=JlLK,1u][iK,1u]-IF i=I,2, "', L (33)

where the effective operational linear stiffness

matrix of the i th manipulator is

[,K:u ] =(jjD-l i= 1, 2, "', L (34)

with the total effective operational linear stiffness
matrix of the system being by

(35)

This solution shows that the local torque mIni

mum for natural joint motion is obtained from
the distribution of the operational forces to the
individual manipulators according to their opera-

The joint torque mllllmization and natural
joint motion schemes, for both the undamped and

damped cases, are simulated for a long time

circular trajectory. In this example, the simulated
manipulator system, seen in Fig 2, consists of

3rd manipulator

2nd mWllpull110r

Fig. 2 Three cooperating redundant manipulators
to the X-Y task space
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Fig. 5 Torque norm trajectory of undamped JTM
(Kd=O)

Fig. 4 Acceleration norm trajectory of undamped
JTM(Kd=O)
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Fig. 3 Velocity norm trajectory of undamped
JTM(Kd=O)

1000

500

750

undamped JTM scheme easily deviates from the

desired system performance. For the single redun
dant manipulator case, both undamped schemes
show the same level of stability problems. The
global characteristics(i. e., the global minimiza
tion of the constrained Lagrangian) of the un

damped NJM scheme are prominently illustrated

three cooperating 3R planar manipulators operat

ing in X - Y task space without gravity. Each link
is modeled as a thin uniform rod with a length of

1.0 m and a mass of 10 kg. The simulated desired
hand trajectory is a circular path with high accel

eration as followings: radius = 0.5 m, .X" =

-radius Jr2COS(Jrt) m/s2, and ji= -radius Jr2s in
(Jrt) m/s2. The total simulation interval is 4 sec,

completing 2 periodic cycles. The initial state of

the manipulator is ¢=[¢[, ¢r, ¢lY =[ -64.34,
128.68, -34.34, 115.66, 128.68, -94.34, -131.41,

82.82, -41.4IF(deg) and ¢=[¢[, ¢r, ¢lY=[O.
812, -1.789, 1.060, -0.977, 1.788, -0.729,0.992,

0, 0.909F(rad/sec). The manipulator dynamics
are integrated at an interval of 0.01 sec with the

fourth order Runge Kutta integration routine.
For a forward dynamic simulation of the three
cooperating manipulators, the dynamic models in

terms of system generalized coordinate set, are
required. First, the optimal joint torque sets, f¢,

are obtained from either Eq. (20) or Eq. (36)

according to the employed joint torque optimiza
tion scheme. Recalling Eq. (15), the effectively

equivalent joint torques, fa' are obtained accord
ing to the selected minimum set of coordi
nates( ¢a)(selected as the three base joint coordi

nates of each manipulator in this example). Then,
the joint accelerations are evaluated by solving

the dynamic equation based on the selected

minimum set of coordinates. The simulation
results of the joint velocity norm, the acceleration

norm, and the torque norm trajectories are given
for each algorithm, and for both the undamped
and damped cases. The units of the plotted veloc

ity, acceleration and torque norms are (rad/secF,
(rad/sec2)2 and (Nm)2, respectively.

The simulation results, seen in Figs. (3)-(14),
show generally similar characteristics to the
results of the single redundant manipulator case
in Kang and Freeman(l993) with respect to the
global torque minimization capability, the result
ing stability, and the convergence to a certain null

space damped joint trajectory. From comparison
of Figs. (3)-(5) and Figs. (9)-(11), however, it

is noted that the undamped NJM scheme gener

ally leads to stable motion and torque trajectories
during the simulation interval(4 sec), while the
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Fig.6 Velocity norm trajectory of null space
damped JTM(Kd =200)
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Fig. 9 Velocity norm trajectory of undamped
NJM(Kd=O)
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Fig. 7 Acceleration norm trajectory of null sace
damped JTM(K d =200)

Time

Fig. 10 Acceleration norm trajectory of undamped
NJM(Kd=O)

Fig. 8 Torque norm trajectory of null space damped
JTM(Kd =200)

in the multiple cooperating redundant manipula
tor cast:, compared to the results of the undamped
JTM scheme. However, the motion and torque
trajectories of the undamped NJM(Figs. (9)
- ( II)) reveal, via the increases in the velocity,

30000

20000

10000

o
o 2

Time 4

acceleration, and torque norms, that they are
deteriorating the desired system performance,

even though at a slow rates. Therefore, the stabil
ity of algorithms using the transpose of Jacobian

among load distribution schemes can not be
guaranteed in case of redundant situation, in
order to map the optimally distributed opera

tional forces(or contact forces/moments) to each
individual manipulator. Such load distribution
schemes might include the all of the first category

in case of heavy object load and some of the third
one in Sec. 1.

The elimination of the stability problem is

accomplished by adding fictitious dissipating
forces, without affecting the operational forces, to
the undamped solutions. Figs. (6)-(8) and Figs.

(12) - (14) demonstrate the effectiveness of this
approach. From the comparison of those results,



110

30000

20000

10000

o

Hee-Jun Kang

600

400

200

o
o 2 3

Time
4 o 2 3

Time
4

Fig. 11 Torque norm trajectory of undamped
NJM(Kd=O)

Fig. 13 Acceleration norm trajectory of null space
damped NJM(K d =5)
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Fig. 12 Velocity norm trajectory of null space
damped NJM(K d =5)

it is concluded that the null space damped natural

joint motion(NDNJM) scheme is superior to the

null space damped joint torque

minimization(NDJTM) scheme with respect to

the global torque minimization capability and the

resulting stability. In addition, the NDJTM

scheme had a much smaller range of damping

gains yielding a stable response than did the
NDNJM scheme, and also, led to a torque peak

and high speed joint motion in its initial stage.

Those problems were also observed in the

NDJTM scheme for single redundant manipula

tors. Therefore, the NDNJM scheme is deemed

more appropriate for joint torque optimization of

the multiple cooperating redundant manipulator

system.

Fig. 14 Torque norm trajectory of null space damped
NJM(K d =5)

6. Conclusion

In this paper, joint torque optimization for

multiple cooperating redundant manipulators rig

idly handling a common object was considered.

This work focused on finding the optimal and

stable distribution scheme of the operational
forces of a multiple redundant manipulator sys

tem to the individual manipulators. Two un

damped/damped joint torque optimization
schemes(local joint torque minimization and nat

ural joint motion) were formulated and compared

with respect to the global torque minimization

capability and the resulting stability. From the

simulation results of a system of three cooperating

redundant manipulators, the null space damped
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and

and the potential energy due to joint deflections,
O¢i, is

U2 = potential energy from gravity forces,
respectively.

The objective function, I, of the current optim
ization problem is given by

(A 1-2)

(AI-3)

(AI-4)1= rt

Ldt .
)to

natural joint motion(NDNJM) scheme is deemed
best among the considered schemes for the desired
system performance. Additionally, the condition

for the distribution of the operational forces

requir'ed to drive the given system along natural
joint motion trajectory was addressed. The ten
dency to instability of natural joint motion was
shown that the direct use of the transpose of

Jacobian, in order to map the optimally distribut
ed opt:rational forces( or contact forces/moments)
to each individual manipulator, seems to be

dangerous in cased of redundant situation.
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APPENDIX
1. Operational Space Dynamic Model

ing of Multiple Cooperating Re
dundant Manipulators Including

Joint Motor Stiffness

Using the Calculus of Variations, the necessary
conditions for minimizing I are given by

_(L(JJ!: )_(JJ!: )=0, (~)=o
dt D<jJ, O¢i OAi'

(O~~'~)=O and ( ~;, )=0,
i= I, 2, ''', L (AI-5)

By substituting the constrained Lagrangian in Eq.
(AI-I) into the conditions in (AI-5) and making

some simplifications, the necessary conditions in
Eq.(AI-5) can be written as

L

L= T- [JI- U2+ I; AJ(/'(¢i)- u)
i=1

where the kinetic energy of the given system is

given by

Assume that the actuated joints in the multiple
cooperating redundant manipulator have their

own joint motor stiffness, which is solely depen
dent on the joint motor characteristics. The stiff

ness matrix of the i th manipulator can be modeled

as LK:~]. Including the effects of the stiffness, the
equations of motion of the given system, con

strainc~d by a predefined operational space trajec
tory, can be obtained by globally minimizing the

constrained Lagrangian. Using the two m X I

vectors of Lagrange multipliers, Ai and Tji, respec
tively, for the i th manipulator, the constrained

Lagrangian, L, can be written as
(A 1-9)

(A 1-7)

[,K:~]o¢,=fTTji i=l, 2, ... , L (AI-8)

[J:~] ~i+ C( <jJi, ¢,) -(({~'JO¢i)Tj,= fTAi,

i= I, 2, ''', L (AI-6)

where

C(¢i, ¢,)=( it [J:~])¢,

- ¢f(+O[a~~] )¢i+( °O~~)
fi~'= it - H(¢i, ¢i) i= I, 2, ... , L

f,o¢,'=OU i=I,2'''',L

Adding Eq.(AI-8) to (AI-6) yields

[,U.]~,+C(¢i' ¢,)

+LX:.] O¢i - (( Z~';)o¢,)7)i = fT(A, + Tj,),

i= 1,2, ... , L (AI-IO)

and

(A I-I)
L

+ I; TjT(JiO¢i- OU)
i=1
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where the effective inertia of the given system is

with the operational spring forces of the given

system being

(AI-22)

(AI-20)

(AI-23)

(AI-19)
L

F= l'F,=[I:u]it+Cu+Su
i=l

Rewriting Eqs. (AI-13) and (AI-IS) with ]i(jj,=
]i[J:¢]-lCf¢ - C( cPi' ¢,} - ,S¢), the unique func

tional relationship which maps the joint torque

set of the i th manipulator into the corresponding

operational forces is expressed as

L L

F=l' Fi=l'(JtFif¢=[]JY f¢ (AI-24)
z=1 1=1

with []tY =[(dtF : ... : (JtF : "'(dtV]
and f¢=[lrl"·irl"·LrlF.

According to Eq. (AI-19), the unique functional

relationship which maps the joint torque set of

the total system into the operational forces is

expressed as

L

Cu=l'{(Jt)TC(cP" ¢,)-[J';U]H(cPi' ¢,)}
l=l

(AI-21)

and the operational Coriolis, centripetal and

gravity forces of the given system is

Multiplying both sides by ]i[J:¢]-1 yields

j,(jji+ ]i[J:¢]-I{ C(cPi' ¢i)

+ [iK:¢]OcPi -((~~~ )OcPi)TJi}

= ]i[J:¢]-I!FUi+ TJ')· (AI-II)

Replacing ]i(jji with Eq.(AI-7) yields

it - H( cPi' ¢iH ]i[J:¢]-I{ C( cPi' ¢,}

+ [,K:¢]OcPi - ((-g~', )ocPi) TJi}

= J,[J:¢]-I!FC'\i+ TJ,)' (AI-l2)

Multiplying both sides by (j,[J:¢]-I]l)-1 and

using the transpose of the pseudo-inverse,

(JtF = (ji[J:¢]-I]l)-I]i[J:¢]-I, yields

C·t, + TJ,) = (jl[J:¢]-l]l)-l( it - H( cP" ¢,»
+(JtFC(cPi, ¢i)
+( JtF[iK:¢]OcPi -(JtF

(( ~~JOcP')TJi'
i = I, 2, "', L (A 1-13)

Using Eq.(AI-8), with the assumption that [iK:¢]
be a nonsingular matrix, the third term of Eq.

(AI-13) becomes

(Ji)T[,K:¢] OcPi= (Jt) T[iK:¢][,K:¢]-I!FTJ,
= TJ,. (AI-14)

Thus, the operational forces of the i th manipula

tor, F i , can be interpreted as

F,=Ai+ TJi=[J,;U] it +iCU+iSU (AI-IS)

where the operational inertia matrix of the i th

manipulator is

(AI-16)

and the operational Coriolis, centripetal and

gravity force vector of the i th manipulator is

iCu=(JtFC(cPi' ¢,}-[J';U]H(cPi' ¢,)
(AI-17)

with the operational spring forces of the ith

manipulator being

2. Effectively Equivalent Operational
Stiffness Matrix of Multiple
Cooperating Redundant Manipula

tors
From Eqs.(AI-14) and (AI-18), the effective

operational spring force of the i th manipulator,

F iS' is given by

iSu =(JtF([iK:¢]ocPi-(( ~~ii )ocPi)

(jtFLK:¢]ocP,) = (Jt)TiS¢. (AI-18)

The operational forces of the total multiple

cooperating manipulator system can therefore be

expressed as

(A2-1)

Solving for TJi from Eqs.(AI-8) and (AI-9) yields

TJi=(jiLK:¢]-I]l)-IOU=LK';uLou (A2-2)

where TJi and LK';uL are the effective operational

linear spring force and the effective operational
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linear stiffness matrix, respectively, due to the

joint motor stiffness, [iK;¢], of the i th manipula

tor.
Employing the second order KIC matrix and

the generalized scalar product(O) seen in Free

man( 1988), the second term of Eq. (A2-1) can be

written as

If 8u is small enough, the nonlinear stiffness force

in Eq.( A2-1) can be neglected, since the forces are

proportional to( 8u V And then, the effective

operational stiffness in Eq.(A2-6) can be replaced

by the effective linear operational stiffness:
L

[K:u ] = X('K/¢Jz
i=l

(J,+)T( (~~', )8¢')7Ji

= (JtjT( 7J,ro[ Hl¢])a¢i' (A2-3)

(A2-8)

(A2-9)

(A2-5)

(A2-6)

The right hand side of Eq. (A2-3) might be inter

preted as nonlinear spring force mapped in opera

tional space of joint nonlinear spring forces,

(7JT°[,Hl¢])O¢, like mapping the centrifugal, Cor

iolis and gravity forces to the corresponding

operational forces. The nonlinear joint spring

force might result from the antagonistic effect of

the manipulator nonlinear geometry between the

effective joint spring torques and the physical

spring forces. Therefore, the antagonistic joint

stiffness is defined as

[,K;¢]A = (7J,ro[Hl¢])· (A2-4)

Combining Eqs.(AI-8) and (A2-2), the infinitesi

mal displacement relationship between a¢i and

du can be expressed as

Then, the effective operational spring force in Eq.

(A2-1) becomes

FiS=LKt'ul8u=([iK:uh +(J,+)
(7JTo[Hl¢])
[X;¢]~lJ/[ ,K:uh)au .

The operational spring force of the total system

can be obtained by adding the contributions of

the individual manipulators as

L L

Fs = [K:u] aU = X FiS =( X[X:u])8u.
i=1 1=1

(A2-7)

TheretlJre, the effectively equivalent operational

stiffness matrix of the multiple cooperating redun

dant manipulator system can be written as

L L

[K,;u] = X (,K,;u] = X (Ji[X;¢]-IJl)
{=-! 1=-1

L

+ l'(J,+jT(7Jro[iH;¢])(,K/¢] I
i=!

The derivation above for the effectively equiva

lent operational stiffness allows the physical inter

pretation of the operational force distribution

scheme shown in Eq. (38) of this paper.
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